United States Patent

US009473365B2

(12) (10) Patent No.: US 9,473,365 B2
Melander et al. 45) Date of Patent: Oct. 18, 2016
(54) COLLABORATIVE INTER-SERVICE 2012/0072581 Al 3/2012 Tung et al.
SCHEDULING OF LOGICAL RESOURCES IN 2012/0102199 Al* 4/2012 Hopmann ... GOGF 9/5044
CLOUD PLATFORMS 709/226
2012/0137215 Al* 5/2012 Kawara GOG6F 3/1206
(71) Applicant: Cisco Technology, Inc., San Jose, CA 715/249
Us) FOREIGN PATENT DOCUMENTS
(72) Inventors: Bob Melander, Stockholm (SE); WO 2010030915 A2 3/2010
Hareesh Puthalath, Stockholm (SE) WO 2013158707 Al 10/2013
(73) Assignee: CISCO TECHNOLOGY, INC., San
Jose, CA (US) OTHER PUBLICATIONS
. Kenhui, “Musings on Cloud Computing and IT-as-a-Service:
sk .
(*) Notice: S:gﬁfti;Oeilzzn(gs(cilag?:é{ég;?ﬁdoétglg [Updated for Havana] Openstack Computer for VSphere Admins,
p) Part 2: Nova-Scheduler and DRS”, Jun. 26, 2013, Cloud Architect
U.S.C. 154(b) by 184 days.)
Musings, 18 pages.*
. Herry, “Keep It Simple, Stupid: OpenStack nova-scheduler and its
(21) - Appl. No.: 14/273,385 algorithm”, May 12, 2012, IBM, 12 pages.*
a1 “Pipeline (Unix),” Wikipedia, May 4, 2014, XP002742701: https://
(22) Filed: May 8, 2014 en.wikipedia.org/w/index.php?title=Pipeline_ %28Unix%29
. L &oldid=606980114.
(65) Prior Publication Data (Continued)
US 2015/0326449 Al Nov. 12, 2015
(51) Int. CL Primary Examiner — Brian J Gillis
HO4L 12/24 (2006.01) Assistant Examiner — Amy Ling
HO4L 29/08 (2006.01) (74) Attorney, Agent, or Firm — Polsinelli PC
GO6F 9/50 (2006.01)
(52) US. CL
CPC ... HO4L 41/5054 (2013.01); GO6F 9/5044 (57 ABSTRACT
(2013.01); GO6F ?/ 5055 (2013.01); G06Pj The subject disclosure relates to a method for scheduling
9/5072 (2013.01); HO4L 67/10 (2013.01); logical resources in cloud platforms. A cloud platform
. . . HO4L 67/16 (2013.01) system identifies resource candidates for hosting a logical
(58) Field of Classification Search resource of a cloud service. The system filters the resource
CPC ... HO4L 41/5054; HOAL 67/10; HOAL 67/16; candidates by running them through a filter chain, a collec-
GOGF 9/5044; GOGF 9/5055; GOGF 9/5072 tion of serially connected filters. The filter chain may contain
See application file for complete search history. one or more reference filters that reference other filter
. chains. When the resource candidates encounter one of the
(56) References Cited

U.S. PATENT DOCUMENTS

6,733,449 B1* 5/2004 Krishnamurthy A61B 8/00
600/437

2009/0328031 Al* 12/2009 Pouyadou GOG6F 3/1203
717/174

reference filters, the other filter chains can be triggered and
processed. The system selects one or more resources for
hosting the logical resource from the filtered resource can-
didates.

20 Claims, 13 Drawing Sheets

7024

708C

looS SERVICE 1

e

7028
s

InaS SERVICE 2

US 9,473,365 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Filter (software)”, Wikipedia, Feb. 8, 2014,XP0027 42702, https://
en.wikipedia.org/w/i ndex.php?title=Filter =~ %28software%29
&oldid=594544359.

Beyer, Steffen, <“Data::Locations,” YAPC::Europe, London,
UK,ICA, Sep. 22-24, 2000, XP0027 42700, https://web.archive.org/

web/20050301000000*/http://guest.engelschall.com/”*’sb/perl/
yapc/Datal.ocations/Datal.ocations.ppt.

International Search Report and Written Opinion for International
Application No. PCT/US2015/029055, mailed Aug. 14, 2015.
“Filter Scheduler,” Open Stack Foundation, http://docs.openstack.
org/developer/nova/devref/filter schedulerhtml, May 8, 2014.

* cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 13 US 9,473,365 B2

DEVICE SERVER
A B
160
160
162 f———-] -
PRIVATE
NETWORK

135 DEVICE

| |
| |
| |
| |
| |
| |
| :

SERVER | g . DEVICE
A i 200 | SERVER i B
| ! :
| FIREWALL 180 | NETWORK | !
|) T |
| 197 193 !

b e e e e e |

U.S. Patent

Oct. 18, 2016 Sheet 2 of 13

200

S

US 9,473,365 B2

DEVICE 240

§

242

MEMORY

FIG. 2

OPERATING DATA
SYSTEM STRUCTURES
S
£ Lol
248 SCHEDULING
PROCESSOR(S)
BUS
250
NETWORK [_— 210
INTERFACE
TO,/FROM
NETWORK

U.S. Patent Oct. 18, 2016 Sheet 3 of 13 US 9,473,365 B2

300

302 302, 3023 302 302,
§ § § § §

31 Sg S3

S | eeees

FIG. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 13 US 9,473,365 B2

400

{

RESOURCE
MANAGER

e 412

FILTER
SCHEBULER

L — 404

CONTEXT
CORTAINERS

| 408

HOST 1| | HOST 6

HOST 2| | HOST 7

HOST 3| | HOST 8

HOST 5| | HOST m

TagS SERVIGE

FIG. 4

U.S. Patent Oct. 18, 2016 Sheet 5 of 13
500
F
506A 508A
5024 ‘/ N v v
5044
5068 508B
5028 —/ \ v g
504B
SURERERERERER IS
502C // N v

Vv
504C

FIG. 5

US 9,473,365 B2

US 9,473,365 B2

Sheet 6 of 13

Oct. 18, 2016

U.S. Patent

9209

009

8¢09

V209

U.S. Patent Oct. 18, 2016 Sheet 7 of 13 US 9,473,365 B2

700

7024
¢

\
(PR
Y

g

7068

710

A

7028

IaaS SERVICE 2
708B
A
706C

= :

FIG. 7

5

N

U.S. Patent

Oct. 18, 2016 Sheet 8 of 13

(_START)

IDENTIFY A SUBSET OF IAAS SERVICES
NEEDED TO INSTANTIATE A LOGICAL
RESOURCE OF A SERVICE

Y

US 9,473,365 B2

~ 802

DEFINE APPROPRIATE FILTER CHAINS FOR
EACH SERVICE IN THE SUBSET OF SERVICES

~— 804

Y

TRIGGER A SCHEDULER

— 806

Y

IDENTIFY AN ENTRY-POINT FILTER CHAIN
AMONG THE FILTER CHAINS

-~ 808

Y

CREATE A CONTEXT CONTAINER THAT CAN
HOLD METADATA

810

Y

COLLECT AND STORE, IN THE CONTEXT
CONTAINER, INFORMATION ABOUT
INFRASTRUCTURE RESOURCE CANDIDATES THAT
CAN HOST THE LOGICAL RESOURCE

812

b

FIG. 81

US 9,473,365 B2

Sheet 9 of 13

Oct. 18, 2016

U.S. Patent

) SIA
YANIVINOD LXIINOD Q3Id0d T
IHL WO¥4 NOILYWHOANI IHL AJSILVS
{8 A HLIM YANIVINOD
IX3INOD 3HL 3Lvadn
)
¥OVE T04INOD ONINIVO
ocg <] TN LIVA_ONY NIVHO
¥a1714 GIONIHIII v oL
T04INOD zm>o ONVH
INIVINOD LXIINOD
978 - 3107 3HL ¥04 43114 ¥ VL
NOILVAYOANI 31vadn <
} > 0Z8
4INIVINOD ¢NIVHD
978 IINOD TN o 43074 JHL NI 14T
40 AJ0D V 3LVIWD SHAlTH
> 818
918 <1 ILVAIONYD 30¥N0SIY ¥ IVl
S
TSon SUINIVINOD
CNg — TX3INOD 3HL NI 1431 SILVAIONYD
v nmdm 304N0STY
e 718

JINIVINOD IX3INOJ 3HL
NOd4 ILVAIONYD 3J4Nn0S3y
JHL JAONIY ANV NAVA

)
7$8

078

3

§
A1VQIONYD
404N0S3y 3H1 ¥04
1HIIAM 3IVINJ1VI

J1VAIANYD
104N0S3Y
JH1 Ol LHIIIM
NAOLINN_ NOISSY

AL

J1vQIANYD 304N0S3Y

D8 "HI.D

U.S. Patent

Oct. 18, 2016

Sheet 10 of 13

START

FETCH A REFERENCED FILTER CHAIN

~~ 902

!

UPDATE THE COPIED CONTEXT CONTAINER
WITH SERVICE SPECIFIC DATA

~ 904

US 9,473,365 B2

916 -

NO FILTERS 910
LEFT IN THE FILTER
CHAIN?
JYES
TAKE A FILTER ~912
NO 5 e~ M
FILTER A REFERENCE
FILTER?
YES
PERFORM REFERENCE FILTER SUBROUTINE -
918
DOES THE YES
RESOURCE CANDIDATE SATISFY
THE FILTER?
NO
MARK AND REMOVE THE RESOURCE CANDIDATE | - g2

FROM THE CONTEXT CONTAINER

FIG. 9

US 9,473,365 B2

Sheet 11 of 13

Oct. 18, 2016

U.S. Patent

¥0I ‘51D

{([yIm oures 1s931e] yum {OY}:H) woy y)yoid Wopues = IOUUIM ()7

1 =[yln
:08]0
“(y)uonouny jysrom = [y]m
'HAL == SIYSIM 9jenoTes J1
JUQY} podyIeW JOU Y JI
Dy} remonaed ur $H)H 01 ,,H WO uopeWIOUT dLIdUa8 Adod pue 1depy
‘90 01,00 woy wvyep oynads-1[y Ados pue depe ¥ 7 19]
[,00 ynm uore wnjd1 03 [0U0d 10J T IVM]
.00 spmyout pue (| 44y “Ag™g)ox 01 jonu0o soAcpuUEY
‘90 01 eIep SyIads-1oyy ppe ¥ 7191
{I2[NPAYOS
SIY} 07 [oNU0D Wimdi Aj1ddoid Joje[UBD 9IIAIIS JIYJO UL J[NPIYDS OS UOIIBULIOUL YIIM ,))) depdn
Sy = {0y} .00 198 remonred ur ‘paAOIDI UOT)BULIOJUL dWIOS M K[qissod ‘) Jo ,H) Ados areard
[+ LA BSL A 4/ 08I0
yealq
HD¥}:DH WO Y SAOWIDI PUR YIB!
A SRy Y It
gLy e st 731
:op x5 w 7 qoes 10

:op {DY}:00 UL Y yoed 1o}

61
81
LT
91
S1
14!
el
Cl
11
01

6
8
L
9
S
b
3
[4
I

U.S. Patent Oct. 18, 2016 Sheet 12 of 13 US 9,473,365 B2

fetch chain Cy X j;
update CC' with service specific data;
for each R in CC":{RC} do: /* Can be only 1 item */
for each F in Cy_X . starting from filter 1 do:
ifFisaFp {hen:
if R fails F, remove R from CC":{RC}, then break;
clse: /*FisaFp*
/* same as in FIG. 10A */

o 3 o W

FIG. 108

U.S. Patent Oct. 18, 2016 Sheet 13 of 13 US 9,473,365 B2

(_START)

Y

IDENTIFY, AT A FIRST SCHEDULER OF A FIRST
SERVICE, A PLURALITY OF RESOURCE CANDIDATES FOR
THE FIRST SERVICE, EACH OF THE PLURALITY OF L~ 1102
RESOURCE CANDIDATES BEING CAPABLE OF HOSTING A
LOGICAL RESOURCE OF THE FIRST SERVICE

DETERMINE_ AN ENTRY=POINT FILTER CHAIN IN A L~ 1104
PLURALITY OF FILTER CHAINS

{

FILTER THE PLURALITY OF RESOURCE CANDIDATES
THROUGH A FIRST FILTER CHAIN COMPRISING SERIALLY
CONNECTED FILTERS, AT LEAST ONE OF THE SERIALLY

CONNECTED FILTERS BEING A REFERENCE FILTER ~~ 1106
REFERENCING A SECONDSEFI{bIEER CHAIN FOR A SECOND

Y

WHEN FILTERING THE PLURALITY OF RESOURCE
CANDIDATES THROUGH THE REFERENCE FILTER IN THE
FIRST FILTER CHAIN, TRIGGER A SECOND SCHEDULER

OF THE SECOND SERVICE FOR PROCESSING THE 1108

SECOND FILTER CHAIN

Y

HAND OVER CONTROL TO A SECOND SCHEDULER OF
THE SECOND SERVICFEI&}(Z)I?R (FJ)I-RIEI(I:‘IESSING THE SECOND [~1110

UPON GAINING CONTROL BACK FROM THE SECOND
SCHEDULER, FILTER THE PLURALITY OF RESOURCE
CANDIDATES THROUGH ANY REMAINING FILTERS IN THE [~ 1112
FIRST FILTER CHAIN

'
ASSIGN RESPECTIVE WEIGHTS TO THE PLURALITY OF ~ 1114
RESOURCE CANDIDATES

'

SELECT, FROM_THE PLURALITY OF RESOURCE ~ 1116
CANDIDATES, A RESOURCE FOR HOSTING THE LOGICAL
RESOURCE OF THE FIRST SERVICE

END
FIG. 11

US 9,473,365 B2

1

COLLABORATIVE INTER-SERVICE
SCHEDULING OF LOGICAL RESOURCES IN
CLOUD PLATFORMS

BACKGROUND

1. Technical Field

The subject technology relates to a method for scheduling
logical resources in cloud platforms. In particular, aspects of
the technology provide systems and methods for utilizing a
filter scheduler with multiple filter chains to enable joint,
service-spanning scheduling among multiple infrastructure
services.

2. Introduction

Through virtual machine technology, cloud computing is
changing the landscape of network-based services by offer-
ing its customers (also known as “tenants”) a means to use
a service provider’s virtualized computing assets, such as
virtual processors, virtual storage, and virtual network
resources, instead of having to purchase and own all of the
necessary equipment outright. In particular, Infrastructure-
as-a-Service (laaS) cloud platforms may offer infrastructure
services such as compute service(s), networking service(s),
and storage service(s) to the tenants. They can provide
logical resources that can be created on-demand by cloud
users via, for instance, a representational state transfer
(REST) application programming interface (API). Examples
of such logical resources are virtual machine (VM), net-
work, router, and block storage.

Under the cover, the logical resources can be imple-
mented and materialized by the laaS platform using servers,
VMs, virtual/physical network devices, and storage devices.
Each infrastructure service may include a resource manage-
ment function and a scheduler function, whereby the logical
resources can be mapped to the underlying physical
resources that host them. To minimize cost, the IaaS pro-
viders may want the resource management and scheduling
functions to make as efficient use of the underlying resources
as possible. The cloud application utilizing the logical
resources may also have specific performance requirements.

However, instantiating a logical resource may often
require that the resource managers and the schedulers in
multiple infrastructure services to work in concert. For
example, in order for a VM to serve as a logical router, the
VM may require information from both a network service
and a compute service, each equipped with its own sched-
uler. If these schedulers execute their tasks independently of
each other in a non-collaborative way, the utilization of the
services may be poor or performance requirements may not
be fulfilled.

Traditionally, one way to solve this problem is to use a
common scheduler for multiple laaS services. This solution,
however, creates a tighter coupling among all of the
involved laaS services. Thus, having a central scheduler
may increase inter-service control traffic and state sharing,
resulting in higher inter-service dependencies. This may also
complicate the evolution of the services as they are typically
developed by separate development teams.

Another traditional method of resolving the problem is to
use a hierarchy of schedulers. However, this approach is not
without its complications. In order to perform scheduling in
a sufficiently efficient manner, the scheduler that sits on top
of the individual service schedulers may require fairly
detailed service-specific knowledge of all the subordinate
schedulers and services. Thus, the scheduler on top easily
ends up merely performing a serialized invocation of the
service-specific schedulers. In other words, the top-level

10

15

20

25

30

35

40

45

50

55

60

65

2

scheduler can be relegated to performing more of an orches-
tration task rather than a true joint, service-spanning sched-
uling.

BRIEF DESCRIPTION OF THE DRAWINGS

Certain features of the subject technology are set forth in
the appended claims. However, the accompanying drawings,
which are included to provide further understanding, illus-
trate disclosed aspects and together with the description
serve to explain the principles of the subject technology. In
the drawings:

FIG. 1 is a schematic block diagram of an example
computer network including nodes/devices interconnected
by various methods of communication;

FIG. 2 is a schematic block diagram of an example
simplified computing device;

FIG. 3 is a schematic block diagram of an example IaaS
cloud platform;

FIG. 4 is a schematic block diagram of an example IaaS
service;

FIG. 5 illustrates example filter chains for a filter sched-
uler;

FIG. 6 illustrates an example resource candidate filtering
process using a filter chain;

FIG. 7 illustrates example filter chains that contain ref-
erence filters;

FIGS. 8A-8B illustrate an example method for scheduling
a service;

FIG. 9 illustrates another example method for scheduling
a service;

FIGS. 10A-10B illustrate example pseudocode for sched-
uling a service; and

FIG. 11 illustrates yet another example method for sched-
uling a service.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

1. Overview

In one embodiment, a scheduler of a service can identify
resource candidates for the service. Each of the resource
candidates may be capable of hosting a logical resource of
the service. The scheduler can then filter the resource
candidates through a first filter chain, which may consist of
serially connected filters. One or more of the filters can be
a reference filter that may reference and trigger a second
filter chain. Next, the scheduler can select from the filtered
resource candidates a resource for hosting the logical
resource.

2. Detailed Description

The detailed description set forth below is intended as a
description of various configurations of the subject technol-
ogy and is not intended to represent the only configurations
in which the subject technology can be practiced. The
appended drawings are incorporated herein and constitute a
part of the detailed description. The detailed description
includes specific details for the purpose of providing a more
thorough understanding of the subject technology. However,
it will be clear and apparent that the subject technology is
not limited to the specific details set forth herein and may be
practiced without these details. In some instances, structures
and components are shown in block diagram form in order
to avoid obscuring the concepts of the subject technology.

In light of the problems identified above with regards to
the inter-service scheduling of logical resources, what is
needed is a configurable scheduling workflow that supports

US 9,473,365 B2

3

collaborative scheduling across multiple services, preferably
with a low degree of inter-service coupling. The subject
technology addresses the foregoing need by using a filter
scheduler with multiple filter chains in each of the laaS
services that are involved in instantiating a logical resource.
A filter scheduler may utilize a series of filters in the form
of a filter chain. The filter scheduler may also perform
weighing to determine the best candidate(s) for hosting the
resource. The scheduler may send a list of resource candi-
dates (i.e., hosts) through the filter chain. The filters may
accept or reject each of the candidates based on their
respective filtering criteria. The optional weighing step can
calculate and assign weights to the candidates that have
passed through the filters. The scheduler selects the resource
candidate with the highest weight to host the requested
logical resource.

Moreover, the proposed method allows a filter chain in
one laaS service to contain a “reference filter” that can
trigger the execution of another filter chain, possibly belong-
ing in a different laaS service. This approach allows for
flexible filtering patterns where scheduling information and
control from multiple services can be interleaved. Thus,
joint, service-spanning scheduling can be performed with
reasonable complexity and low inter-service coupling.

Description:

A computer network is a geographically distributed col-
lection of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations. Many types of net-
works are available, with the types ranging from local area
networks (LLANs) to wide area networks (WANs). LANs
typically connect the nodes over dedicated private commu-
nications links located in the same general physical location,
such as a building or campus. WANs, on the other hand,
typically connect geographically dispersed nodes over long-
distance communications links, such as common carrier
telephone lines, optical lightpaths, synchronous optical net-
works (SONET), or synchronous digital hierarchy (SDH)
links.

The Internet is an example of a WAN that connects
disparate networks throughout the world, providing global
communication between nodes on various networks. The
nodes typically communicate over the network by exchang-
ing discrete frames or packets of data according to pre-
defined protocols, such as the Transmission Control Proto-
col/Internet Protocol (TCP/IP). In this context, a protocol
consists of a set of rules defining how the nodes interact with
each other. Computer networks may be further intercon-
nected by an intermediate network node, such as a router, to
extend the effective “size” of each network.

Cloud computing can be generally defined as Internet-
based computing in which computing resources are dynami-
cally provisioned and allocated to client, user computers or
other devices on-demand from a collection of resources
available via the network (e.g., “the cloud”). Cloud com-
puting resources, for example, can include any type of
resource such as computing, storage, and network devices,
virtual machines (VMs), etc. For instance, resources may
include service devices (firewalls, deep packet inspectors,
traffic monitors, etc.), compute/processing devices (servers,
CPU’s, memory, brute force processing capability), storage
devices (e.g., network attached storages, storage area net-
work devices), etc., and may be used for instantiation of
Virtual Machines (VM), databases, applications (Apps), etc.

Cloud computing resources may include a “private
cloud,” a “public cloud,” and/or a “hybrid cloud.” A “hybrid
cloud” is a cloud infrastructure composed of two or more

10

15

20

25

30

35

40

45

50

55

60

65

4

clouds that inter-operate or federate through technology. In
essence, a hybrid cloud is an interaction between private and
public clouds where a private cloud joins a public cloud and
utilizes public cloud resources in a secure and scalable way.

FIG. 1 is a schematic block diagram of an example
computer network 100 illustratively including nodes/devices
interconnected by various methods of communication. For
instance, links may be wired links or shared media (e.g.,
wireless links, etc.) where certain nodes may be in commu-
nication with other nodes based on physical connection, or
else based on distance, signal strength, current operational
status, location, etc. Those skilled in the art will understand
that any number of nodes, devices, links, etc. may be used
in the computer network, and that the view shown herein is
for simplicity.

Specifically, devices “A” and “B” may include any device
with processing and/or storage capability, such as personal
computers, mobile phones (e.g., smartphones), gaming sys-
tems, portable personal computers (e.g., laptops, tablets,
etc.), set-top boxes, televisions, vehicles, etc., and may
communicate with the network 160 (internet or private
networks) to cloud 150. In addition, one or more servers
(Server A and B), network management servers (NMSs),
control centers, etc., may also be interconnected with (or
located within) the network 160 to cloud 150.

Cloud 150 may be a public, private, and/or hybrid cloud
system. Cloud 150 includes a plurality of resources such as
firewalls 197, virtual networks 193, storage 195, devices
200, servers 180, and virtual machines (VMs) 190. The
cloud resource may be a combination of physical and virtual
resources. The cloud resources are provisioned based on
requests from one or more clients. Clients may be one or
more devices, for example device A and/or B, or one or more
servers, for example server A and/or B.

Data packets (e.g., traffic and/or messages) may be
exchanged among the nodes/devices of the computer net-
work 100 using predefined network communication proto-
cols such as certain known wired protocols, wireless proto-
cols or other protocols where appropriate. In this context, a
protocol consists of a set of rules defining how the nodes
interact with each other.

FIG. 2 is a schematic block diagram of an example
simplified computing device 200 that may be used with one
or more embodiments described herein, e.g., as a server 180,
or as a representation of one or more devices as VM 190.
The illustrative “device” 200 may comprise one or more
network interfaces 210, at least one processor 220, and a
memory 240 interconnected by a system bus 250. Network
interface(s) 210 contain the mechanical, electrical, and sig-
naling circuitry for communicating data over links coupled
to network 100. The network interfaces 210 may be con-
figured to transmit and/or receive data using a variety of
different communication protocols, as will be understood by
those skilled in the art. The memory 240 comprises a
plurality of storage locations that are addressable by pro-
cessor 220 for storing software programs and data structures
associated with the embodiments described herein. The
processor 220 may comprise necessary elements or logic
adapted to execute the software programs and manipulate
data structures 245. An operating system 242, portions of
which are typically resident in memory 240 and executed by
the processor, functionally organizes the device by, inter
alia, invoking operations in support of software processes
and/or services executing on the device. These software
processes and/or services may include an illustrative logical
resource scheduling process 248, as described herein.

US 9,473,365 B2

5

It will be apparent to those skilled in the art that other
processor and memory types, including various computer-
readable media, may be used to store and execute program
instructions pertaining to the techniques described herein. In
addition, while the description illustrates various processes,
it is expressly contemplated that various processes may be
embodied as modules configured to operate in accordance
with the techniques herein (e.g., according to the function-
ality of a similar process). Further, while the processes have
been shown separately, those skilled in the art will appre-
ciate that processes may be routines or modules within other
processes. For example, processor 220 can include one or
more programmable processors, e.g., microprocessors or
microcontrollers, or fixed-logic processors. In the case of a
programmable processor, any associated memory, e.g.,
memory 240, may be any type of tangible processor readable
memory, e.g., random access, read-only, etc., that is encoded
with or stores instructions that can implement program
modules, e.g., a module having resource allocation process
encoded thereon.

Processor 220 can also include a fixed-logic processing
device, such as an application specific integrated circuit
(ASIC) or a digital signal processor that is configured with
firmware comprised of instructions or logic that can cause
the processor to perform the functions described herein.
Thus, program modules may be encoded in one or more
tangible computer readable storage media for execution,
such as with fixed logic or programmable logic, e.g., soft-
ware/computer instructions executed by a processor, and any
processor may be a programmable processor, programmable
digital logic, e.g., field programmable gate array, or an ASIC
that comprises fixed digital logic, or a combination thereof.
In general, any process logic may be embodied in a proces-
sor or computer readable medium that is encoded with
instructions for execution by the processor that, when
executed by the processor, are operable to cause the pro-
cessor to perform the functions described herein.

FIG. 3 is a schematic block diagram of an example laaS
cloud platform 300. IaaS cloud platform 300 can offer its
customers computers and other resources, both physical and
virtual. To that end, IaaS cloud platform 300 may maintain
a pool of physical and/or virtual machines and resources.
The resources offered by laaS cloud platform 300 may
include virtual machines, servers, a disk image library,
storage, load balancers, firewalls, networks, Internet proto-
col (IP) addresses, virtual local area networks (VLANs),
software solutions, etc. These services can be provided
on-demand when the clients request them.

IaaS cloud platform 300 may consist of one or more laaS
services 302,, 302, . . ., 302, (collectively “302”). Each of
the IaaS services 302 is capable of providing a service of one
resource type or another. For example, laaS service 302,
may provide a virtual firewall service while laaS service
302, may provide a load balancing service. Each of the IaaS
services 302, in turn, may be a collection of servers, network
devices, and other resources.

Although platform 300 is presented herein as an laaS
cloud platform, the various embodiments are not limited in
this regard. For example, the various embodiments disclosed
herein are also applicable to other cloud platforms such as
platform as a service (PaaS) and software as a service
(SaaS).

FIG. 4 is a schematic block diagram of an example laaS
service 400. Infrastructure service 400 can be one of the
services that make up a larger cloud platform such as laaS
cloud platform 300. IaaS service 400 may offer one or more
services such as a virtual machine, a server, a disk image

20

30

35

40

45

55

6

library, storage, a load balancer, a firewall, a network, an IP
address, a VLAN, and a software solution. IaaS service 400
can consist of one or more computing devices such as
computing device 200 of FIG. 2. TaaS service 400 may also
consist of one or more subcomponents such as resource
manager 402, filter scheduler 404, context containers 406,
and resource pool 408.

Although FIG. 4 shows four of the possible subcompo-
nents that make up IaaS service 400, those of skill in the art
will understand that other components may also be part of
IaaS service 400. Those of skill in the art will also under-
stand that some of the subcomponents can be combined into
a single component. For example, one or more of resource
manager 402, filter scheduler 404, context containers 406,
and resource pool 408 can be combined into the same
hardware and/or software modules. The various components
can also exist in a distributed fashion across different infra-
structure services or even different cloud platforms. For
example, several different infrastructure services may have
one central resource manager, filter scheduler, or context
container that they may share. In another example, resource
pool 408 can be shared among multiple infrastructure ser-
vices that may be of differing service types. In such an
embodiment, the resource hosts in the shared resource pool
408 can be provisioned to provide different services depend-
ing on which infrastructure service is using the resource
pool.

Resource manager 400 performs a resource management
function. The resource management function, along with a
scheduler such as filter scheduler 404, enables the logical
resources to be mapped to the underlying physical resources
that host them. Specifically, resource manager 402 can
instantiate or destroy logical resources according to the
needs of the clients by provisioning, running, and/or modi-
fying the host devices in resource pool 408. A scheduler such
as filter scheduler 404 shown in FIG. 4 can select one or
more host devices from resource pool 408 to host one or
more logical resources. Filter scheduler 404 can also predict
the needs of IaaS service 400 and schedule and reserve hosts
to be consumed in the future. Filter scheduler 404 accom-
plishes these objectives by using one or more filters, which
can be organized into serially connected groups of filters
called filter chains.

In order to instantiate a logical resource, resource man-
ager 402 and filter scheduler 404 may have to work in
tandem with resource managers and schedulers of other
infrastructure services. For example, instantiating a virtual
firewall may also require an instantiation of a new virtual
router. In such an instance, the scheduler for the firewall
service may trigger the scheduler for the router so that the
router can be fully or partially instantiated prior to the
instantiation of the firewall.

Context container 406 can contain context information
necessary to instantiate virtual resources. Context informa-
tion can be data, metadata, data structures, databases, set-
tings, preferences, history data, statuses, pointers, refer-
ences, indexes, counters, etc. The context information may
be stored in volatile memory such as random access memory
(RAM) or in non-volatile memory such as a flash storage or
magnetic storage device. The context container can be
accessed by filter scheduler 404 and associated with filters
and/or filter chains so that the scheduling function can
preserve, update, modify, duplicate, and transfer context.
Context container 406 may contain multiple instances of
context data so that filters and/or filter chains may each have
their own context.

US 9,473,365 B2

7

Resource pool 408 is a collection of physical or logical
resources that can host logical resources. The resources that
are not currently hosting a service may be placed in a
suspended state and presented as resource candidates until
they are selected by scheduler 404 to host an instance of a
service. The hosts inside resource pool 408 can be servers,
virtual machines, terminals, network devices, etc. New hosts
can be added to resource pool 408 or surplus hosts can be
removed from resource pool 408 dynamically by resource
manager 402 according to the current and future needs of
IaaS service 400.

FIG. 5 illustrates example filter chains 502A-502C (col-
lectively “502”) for example filter scheduler 404 of FIG. 4.
Filtering process 500 shown in FIG. 5 can be a logical rather
than a physical representation of the structures and interre-
lationships of filter chains 502. An infrastructure service
such as IaaS service 400 shown in FIG. 4 can have more than
one filter chains such as filter chains 502. In some embodi-
ments, a filter chain can be a linked list of multiple filter
objects. A set of candidate resources 506A, which may be
part of resource pool 408, can be put through a series of
filters 504 A in filter chain 502A. In some embodiments, the
candidate resources can go through one filter of the filter
chain at a time as a group. In other embodiments, each one
of the candidate resources can go through the entirety of the
filter chain before the next candidate resource traverses the
chain. The resulting filtered set of resources 508 A can be one
or more resource candidates that are determined to be better
or best suited to host the service according to the various
requirements and criteria embodied in filters 504A. One or
more filtered resource candidates 508A may be ordered
based on suitability. Similarly, other filter chains 506B,
506C may filter other sets of resource candidates 5068,
506C to produce other filtered sets of resources 508B, 508C,
respectively. One or more filter chains can be an entry-point
filter chain, which is typically the first filter chain invoked to
instantiate a resource. Other filter chains can be triggered or
invoked while the entry-point filter chain is being executed.
The entry-point filter chains can be determined by referenc-
ing a hash table that lists the types of resources with
matching entry-point filter chains.

Each filter chain may consist of one or more filters 504 A,
504B, 504C (collectively “5047). Filters 504 and filter
chains 502 can be implemented as hardware or software
modules. In some embodiments, filters 504 can be an
algorithm with an accompanying data structure. Filters 504
can be a traditional filter, a reference filter, or a hybrid filter
that is a mixture of a traditional filter and a reference filter.
Traditional filters can accept or reject a resource candidate in
resource pool 408 as a suitable host for a service. In other
words, filters 504 can be a set of instructions or an algorithm
that determines whether the candidates meet predetermined
conditions, requirements, and/or thresholds. For example,
traditional filters can accept or reject a candidate resource
using various criteria, such as, computing capabilities,
resource availability, utilization rate, bandwidth, resources,
usage history, failure rate, available features, reservation
schedule, dependency, storage capacity, resource pool avail-
ability, client specifications, etc. Each filter can be further
customized to meet the needs of the clients. For example, a
compute capability filter can be set up to screen out hosts
whose computing capabilities are below a user-specified
threshold.

On the other hand, one or more of filters 504 can be a
reference filter that makes a reference to another filter
scheduler, filter chain, or filter. Thus, with a reference filter,
execution of filters can jump from one filter scheduler to

10

15

20

25

30

35

40

45

50

55

60

65

8

another filter scheduler, from one filter chain to another filter
chain, and/or from one filter to another filter. When a filter
scheduler triggers another filter scheduler by means of a
reference filter, the original filter scheduler may be sus-
pended until control returns from the newly triggered sched-
uler.

FIG. 6 illustrates an example resource candidate filtering
process 600 using a filter chain. The example filter chain
contains traditional filters 604 A, 604B, which may accept or
reject each of the host candidates that pass through the filters
according to the conditions, criteria, and/or requirements
that those filters each represent. For example, filter scheduler
404 may present a set of candidate hosts 602A to filter 604A.
Running a host candidate through traditional filter 604 A may
involve applying the algorithm or instruction set associated
with filter 604A to the candidate. Filter 604A, in this
example, filters out two of the hosts (i.e., Host 1 and Host 3)
from candidate set 602A as being unsuitable and outputs
candidate set 602B consisting of the remaining hosts, Host
2, Host 4, and Host 5. Optionally, each host in candidate set
602B can be weighted and ordered according to the assigned
weights. The weights can be assigned according to the
criteria imbued in filter 604A.

Filter 604B, which is the next filter in line in this example
filter chain, is then applied to the remaining hosts in candi-
date set 602B. Filter 604B may be of the same or different
type of filter than filter 604A. For instance, filter 604A may
be a compute capacity filter while filter 604B is an avail-
ability filter. Filter 604B may filter out additional hosts (e.g.,
Host 5) from candidate set 602B and output candidate set
602C consisting of host candidates that managed to pass
through filter 604B. Optionally, the surviving candidates in
candidate set 602C can be weighted once more and reor-
dered according to the updated suitability scores. In some
embodiments, weights can be assigned only once at the end
of the filter chain rather than each time the candidates pass
through a filter. Once the host candidates have passed
through all the filters in the filter chain, filter scheduler 404
can select one or more hosts to be used to instantiate a
logical resource. The selection can be based on the weighted
scores given to the candidates. Alternatively, the selection
can be made randomly or semi-randomly.

FIG. 7 illustrates an example filtering process 700 that
involves filter chains 706 A, 706B, 706C, 706D (collectively
“706”) that contain one or more reference filters 708A,
708B, 708C (collectively ““708). Reference filters 708A,
708B, 708C (collectively “708”) may make reference to
other filter chains, either within or beyond the infrastructure
service that they belong to. Reference filters 708 may
contain such reference information as a target service, a
target scheduler, a target filter chain, and/or a filter chain
index. In this example, filter scheduler 702A for IaaS
Service 1 is tasked with instantiating a resource of service
type 1. Filter scheduler 702A identifies entry-point filter
chain 706B for service type 1. Filter chain 706B contains
several traditional filters as well as a couple of reference
filters 708 A, 708C. Reference filter 708 A makes a reference
to the first filter in filter chain 706C of infrastructure service
702B. On the other hand, reference filter 708C makes a
reference to the third filter in filter chain 706 A belonging to
service 702A. In order to select the right candidate to host
the logical resource, scheduler 702A may run a group of
resource candidates 704 through one or more filter chains
706.

Scheduler 702A may start with entry-point filter chain
706B and run the host candidates through the filters in filter
chain 706B. The candidates can pass through the entirety of

US 9,473,365 B2

9

the filters one candidate at a time or they can also pass
through the filters as a group, one filter at a time. Either way,
when a resource candidate reaches reference filter 708A,
which references another filter chain 706C belonging in
another infrastructure service, filter scheduler 702A can
suspend the execution of filter chain 706B before triggering
filter scheduler 702B and/or filter chain 706C. Filter sched-
uler 702B can continue the filtering process by invoking the
referenced filter in filter chain 706C. In this example,
filtering chain 706C includes a reference filter 708B, which
references the second filter in filter chain 706D of laaS
service 2.

The host candidate may successfully pass through some
of the traditional filters in filter chain 706C before encoun-
tering reference filter 708B, at which point control is shifted
to yet another filter chain 706D. The execution of filter chain
706C may be suspended until control returns from filter
chain 706D. If the resource candidate successfully passes
through all the filters in filter chain 706D, filter scheduler
702B resumes execution of 706C where it left off earlier.
After processing the remaining filters in 702B, control
finally returns to filter chain 706B until the resource candi-
date encounters yet another reference filter 708C, which
references filter chain 706A of IaaS service 1. Filter sched-
uler 702A identifies the appropriate filter index and begins
execution of the filters in filter chain 706A. Once control
returns to filter chain 706B, the remaining filters are pro-
cessed and any resource candidates that managed to suc-
cessfully pass through all of the filters in the filter chain are
presented as acceptable candidates 710, from which filter
scheduler 702A can finally select one or more hosts for the
logical resource.

Optionally, any resource candidates that pass through one
or more filters can be weighted and assigned scores that
indicate suitability for hosting a logical resource. The
weighting can be done in between filters or at the end of the
filter chain. The criteria that are used for weighting can be
similar to those used by the filters. Different weighting
criteria can have varying degrees of multipliers so that each
criterion can be prioritized. In other words, a higher-value
multiplier can be used to assign scores for a higher-priority
criterion.

Filter schedulers 702 may also use context containers to
preserve context when switching from one filter chain to
another. The context containers can contain context infor-
mation needed to schedule a resource. Various filters and
filter chains 706 may add new information to the context
containers, modify the information in the context containers,
or delete information from the context containers. Thus, a
context container, in effect, can function as a communication
mechanism between filters and/or filter chains. As an
example, entry-point filter chain 706B can be associated
with context container CC. Context container CC, for
instance, may contain information about the resource can-
didate set that is passing through filter chain 706B.

Moreover, when handing control over to filter chain 706C,
however, filter scheduler 702 A can create a duplicate context
container CC' based on CC and hand it over to filter
scheduler 702B or filter chain 706C. Filter scheduler 702A
can also update duplicate context container CC' with refer-
ence information so that scheduler 702B can properly return
control back to scheduler 702A. When control does return to
scheduler 702A, some of the information contained in CC'
that is specific to scheduler 702B can be adapted and copied
to CC. By the same token, when filter chain 706C triggers
filter chain 706D, e.g., by way of reference filter 708B,
scheduler 702B can spawn yet another child context con-

10

15

20

25

30

35

40

45

50

55

60

65

10

tainer CC" based on CC'. Duplicate context container CC"
can contain necessary information to process the appropriate
set of host candidates through filter chain 706D and return
control back to filter chain 706C. Filter chain 706D may
modify some data contained in CC" over the course of its
filtering process and some of that data can be adapted and
copied back to the parent context container CC'. Similarly,
still yet another duplicate context container CC" can be
generated for filter chain 706A.

Having disclosed some basic system components and
concepts, the disclosure now turns to some exemplary
method embodiments shown in FIGS. 8-11. For the sake of
clarity, the methods are discussed in terms of an example
system 100, as shown in FIG. 1, configured to practice the
methods. It is understood that the steps outlined herein are
provided for the purpose of illustrating certain embodiments
of the subject technology, but that other combinations
thereof, including combinations that exclude, add, or modify
certain steps, may be used.

FIGS. 8A-8B illustrate an example method embodiment.
In FIG. 8A, system 100 can identify a subset of laaS services
needed to instantiate a logical resource of a service (802).
For example, an laaS cloud platform may have n laaS
services S, S,, . . ., S, that use filter schedulers supporting
multiple filter chains. To instantiate a logical resource X of
service Sy, it may be desirable, for efficiency, performance,
feasibility, etc., to involve a subset {S,}k, with k of the n
services, in the scheduling task. Next, system 100 can define
appropriate filter chains for each service in the subset of
services (804). This can be performed during maintenance of
the IaaS cloud platform. For example, for each service in
{8,}kU{S,}, m, filter chains, C, X, where j=1, .. ., m, and
m,=z1, appropriate for X can be defined and created. A filter
chain can be an arbitrary, but finitely long, ordered sequence
of filters F. The filters can be either traditional filters F . that
accept or reject candidates or reference filters Fy. The
reference filters may point to another scheduler S_S;, a filter
chain C; X, and index 1 into that chain, where S is another
service in {S,}kU{S}. Hence, the reference filter can be
symbolized as Fp=Ref(S_S;, Cy X, 1) and the filter chain
can be written as C;, X:F,—F,— ... —F_, where I can be
either an F, or an Fy. One of the filter chains in S,
C10rX=Cy X, can be the entry-point in the scheduling of an
X instance.

The creator of the chains or the IaaS platform may need
to ensure that there are no “infinite loops” in the filter chains.
For example, if one filter chain contains a reference filter
that references another filter chain, and the second filter
chain contains a reference filter that references the original
filter chain, it is possible that execution of one of the filter
chains would result in a never-ending cycle, switching back
and forth between the two filter chains.

System 100 can then trigger a scheduler (806). In other
words, invocation of the scheduler may be triggered as part
of creating an X logical resource. System 100 can then
identify an entry-point filter chain among the filter chains
(808). For example, the entry-point chain C,,,,, X for X may
be determined by the IaaS platform. The determination of
the entry-point chain can be accomplished by performing a
lookup in a hash table.

System 100 may create a context container that can hold
metadata (810). For example, a context container CC can be
created so that it can hold context information for instance
X needed during scheduling and application of filters. This
can include information about other logical resource
instances, both currently existing and not yet instantiated.
Filters can add information to CC. The context container can

US 9,473,365 B2

11

thereby effectively act as a communication mechanism
between different filters in the chains. System 100 may then
collect and store, in the context container, information about
infrastructure resource candidates that can potentially host
the logical resource (812). For example, the information
about infrastructure resource candidates that can possibly
host X can be collected and stored as a set {RC} in CC.
In FIG. 8B, system 100 may go through each resource
candidate in the context container by determining whether
there are any resource candidates left in the context con-
tainer (814). If there are one or more resource candidates to
evaluate in the container, then system 100 may take one of
the resource candidates (816) and run it through the filters in
the filter chain. For example, system 100 can identify a
resource candidate R in CC:{RC}. Execution of the filters
can be accomplished by determining whether there are any
filters left to process in the filter chain (818) and taking a
filter in the filter chain (820). For example, system 100 may
start out with the entry filter chain C,,,,,X. Then, system 100
may determine whether the current filter is a traditional filter
or a reference filter (822). If the filter turns out to be a
traditional filter, then system 100 determines whether the
resource candidate satisfies that filter (824). If the resource
candidate satisfies the filter, then system 100 proceeds to the
next filter in the filter chain and processes the next filter
(818). However, if the resource candidate fails to satisfy the
traditional filter, then system 100 can mark and remove the
resource candidate from the context container (834). For
example, resource candidate R may be marked and removed
from CC:{RC}. Since the resource candidate has already
failed one of the filters in the filter chain, there is no need to
process the remaining filters in the chain in this case. Thus,
system 100 may continue to see if there are any other
resource candidates to evaluate (814) and pick another
resource candidate (816) to run through the filter chain(s).
If, on the other hand, the filter being executed is a
reference filter, then system 100 can create a copy of the
context container (826). For example, a copy CC' of CC can
be created. When doing so, some information in CC can be
removed or modified in CC' to suit the need of the filter
chain being triggered. Additionally, the new resource can-
didate set for CC' may be set to consist solely of the current
resource candidate R being evaluated. In other words, CC':
{RC} may be set to be equal to {R}. Next, system 100 may
update information for the copied context container (828).
Thus, for example, CC' can be updated with necessary
information to help the scheduler in another service properly
return control to the current scheduler. Additionally, F, can
add filter-specific data to CC and/or CC'. Then, system 100
can hand over control to the referenced filter chain and wait
until gaining back control (830). For example, control can be
handed over to Ref(S_S;, C; X, 1), and CC' object or its
reference pointer can be sent along to the referenced sched-
uler or filter chain. In some embodiments, control can be
handed over to other scheduler(s) by way of message
queue-based remote procedure call (RPC). While filter chain
Cy X, is being executed by S_Sy, the current filter chain F
can be suspended. When control finally returns, the current
filter chain or the scheduler may also receive context con-
tainer CC", which is a modified version of C' by S_S, and
any other services to remove any service-specific (and thus
irrelevant to the original scheduler) data from CC'. System
100 may update the context container with information from
the copied context container (832). For example, Fy can
adapt and copy filter-specific data (in particular the filtered

20

25

40

45

55

12

resource candidate set {RC}) from CC" to CC. System 100
then continues the filtering process with any remaining
filters (818).

Once the filters in the given filter chain is exhausted (818),
system 100 determines whether the resource candidate is
marked (836). In other words, it is determined whether the
resource candidate successfully passed through all of the
filters in the filter chain(s). If the resource candidate is
marked (i.e., failed one of the filters), then system 100
moves on to process any other remaining resource candi-
dates in the context container (814). If, on the other hand, the
resource candidate is not marked, then system 100 can
optionally assign a weight to the validated resource candi-
date. The weight can be a suitability score that indicates how
suitable or desirable the particular resource candidate is for
hosting the logical resource. Thus, if a flag condition indi-
cates that a weight is to be calculated (838), system 100 may
calculate the weight for the resource candidate (840). For
example, the weight can be calculated with a weight func-
tion (e.g., w[R]=weight_function(R)). Alternatively, system
100 may assign a uniform weight to the resource candidate
(842). For example, system 100 can assign the same score to
every resource candidate (e.g., w[R]=1). Once the calculated
weight or uniform weight is assigned to the resource can-
didate, system 100 may move on to process other resources
candidates left in the context container (814). In some
embodiments, the weighting steps can be performed after
each filter instead of being performed only once at the end
of the entire filter chain.

When all the resource candidates are processed and the
candidate set is exhausted in the context container, system
100 can finally select a host (844). In some embodiments,
system 100 can select multiple hosts for multiple logical
resources. The selection of the host(s) can be based on the
weights that are assigned to the candidate resources. For
example, the resource candidate with the highest suitability
score can be selected as the host. If there are more than one
candidate with the same or similar score, then the host may
be selected randomly.

FIG. 9 illustrates another example method embodiment
for scheduling a service. Specifically, the method embodi-
ment shown in FIG. 9 may pick up from step 830 of FIG. 8B,
where the original scheduler hands over control to a refer-
enced filter chain. The referenced filter chain may be asso-
ciated with an infrastructure service that is different from the
one that the original scheduler belongs to. The method
embodiment for the referenced filter chain largely mirrors
that of the original filter chain. The key difference is the
handling of the context containers because the referenced
filter chain may have a separate but related context container
that is copied from the original context container.

System 100, which can be a referenced filter scheduler,
may gain control handed over from the original scheduler
and fetch a referenced filter chain (902). For example, the
referenced scheduler can retrieve information about filter
chain Cy X, which was referenced in the context container.
System 100 can then update the copied context container
with service-specific data (904). For example, system 100
can update context container CC', which is a copy of the
original context container CC, with data that are specific to
the referenced infrastructure service. Next, system 100 may
determine whether there are any resource candidates left in
the copied context container (906). For example, system 100
can peek into CC' {RC} and see if there are any resources,
such as resource candidate R, left in the context container. If
system 100 is processing one resource candidate at a time
through the entire filter chain, then there may be only one

US 9,473,365 B2

13

resource candidate in the copied context container. Alterna-
tively, if more than one resource candidates are being
filtered, then there could be more than one resource candi-
dates in the copied context container.

If there is at least one resource candidate to process in the
copied context container, then System 100 may take a
resource candidate (908), and run the resource candidate
through the filters in the filter chain by determining whether
there are filters left in the filter chain (910), and taking one
of the filters (912). For example, system 100 may start from
the filter with index 1, as specified in the context container.
If system 100 determines that the filter is a reference filter
(914), then it can perform a reference filter subroutine (916)
that is similar to steps 826-832 in FIG. 8B. In particular, via
one or more reference filters, the referenced filter chain may
trigger yet other filter chains inside or outside the infrastruc-
ture service to create multi-layered filter chains.

If the filter is a traditional filter, on the other hand, then
system 100 may determine whether the resource candidate
satisfies the filter (918), and mark and remove the resource
candidate from the context container (920) if the candidate
fails the filter. Once all the filters have been processed and
there is no other filters left to process in the filter chain (910),
system 100 may assign weights to the resource candidate(s)
according to the steps similar to steps 836-842 of FIG. 8B.
Throughout the filtering process of steps 902-920, system
100 may update and/or modity the copied context container
CC' or generate a new context container CC" based on other
context containers. Once all the resources have been filtered
through the filter chain (906), system 100 may return control
to the original filter scheduler that triggered the referenced
filter scheduler.

FIGS. 10A-10B illustrate example pseudocode for sched-
uling a service. The pseudocode shown in FIG. 10A and
FIG. 10B may correspond with the steps illustrated in the
method embodiments of FIG. 8B and FIG. 9, respectively.
Those of skill in the art will understand that other imple-
mentations of the method embodiments are also possible.
For example, the pseudocode shown in FIGS. 10A-10B can
be modified so that the order in which the two for loops are
layered can be reversed. In other words, the for loop of line
1 in FIG. 10A can be placed inside the for loop of line 2 so
that system 100 can filter all the resource candidates through
the filter chain(s) together, one filter at a time, instead of
processing one resource candidate at a time through the
entire filter chain(s). In other variations, the weighting
routine of lines 15-19 may be placed inside the for loop of
line 2 and the effects of the weighting be made cumulative
so that the weighting can be performed at every filter instead
of only once after processing the entire filter chain.

FIG. 11 illustrates yet another example method embodi-
ment for scheduling a service. System 100 may identify, at
a first scheduler of a first service, a plurality of resource
candidates for the first service, each of the plurality of
resource candidates being capable of hosting a logical
resource of the first service (1102). System 100 may also
determine an entry-point filter chain from a plurality of filter
chains (1104). Then, system 100 may filter the plurality of
resource candidates through a first filter chain comprising
serially connected filters, at least one of the serially con-
nected filters being a reference filter referencing a second
filter chain for a second service (1106). For example, the first
filter chain can be the entry-point filter chain for the first
service. When filtering the plurality of resource candidates
through the reference filter in the first filter chain, system
100 may trigger a second scheduler of the second service for
processing the second filter chain (1108). System 100 may

10

15

20

25

30

35

40

45

50

55

60

65

14

then hand over control to the second scheduler of the second
service for processing the second filter chain (1110). The
first scheduler at this time may be suspended until control
returns to it. Upon gaining control back from the second
scheduler, the first scheduler may filter the plurality of
resource candidates through any remaining filters in the first
filter chain (1112). Optionally, system 100 can assign respec-
tive weights to the plurality of resource candidates (1114).
These weights can represent suitability scores for hosting the
logical resource. System 100 can then select, from the
plurality of resource candidates, a resource for hosting the
logical resource of the first service (1116). The selected
resource can be a physical resource that is capable of hosting
the logical resource. The selection can be based any of the
weights that have been assigned to one or more resource
candidates.

It should be understood that the steps shown above are
merely examples for illustration, and certain steps may be
included or excluded as desired. Further, while a particular
order of the steps is shown, this ordering is merely illustra-
tive, and any suitable arrangement of the steps may be
utilized without departing from the scope of the embodi-
ments herein.

The techniques described herein, therefore, provide for
improving user experience, simplifying application service
design using cloud services, and more predictably establish-
ing a virtual resource instantiation time.

While there have been shown and described illustrative
embodiments that provide for scheduling a logical resource,
it is to be understood that various other adaptations and
modifications may be made within the spirit and scope of the
embodiments herein. For example, the embodiments have
been shown and described herein with relation to cloud
networks. However, the embodiments in their broader sense
are not as limited, and, in fact, may be used with other types
of shared networks. Moreover, even though some of the
embodiments have been shown and described herein with
relation to infrastructure services, resources may be sched-
uled according to the various methods described herein in
other types of services such as platform services and soft-
ware services.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that
the components and/or elements described herein can be
implemented as software being stored on a tangible (non-
transitory) computer-readable medium (e.g., disks/CDs/
RAM/EEPROM/etc.) having program instructions execut-
ing on a computer, hardware, firmware, or a combination
thereof. Accordingly, this description is to be taken only by
way of example and not to otherwise limit the scope of the
embodiments herein. Therefore, it is the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
embodiments herein.

It is understood that any specific order or hierarchy of
steps in the processes disclosed is an illustration of exem-
plary approaches. Based upon design preferences, it is
understood that the specific order or hierarchy of steps in the
processes may be rearranged, or that only a portion of the
illustrated steps be performed. Some of the steps may be
performed simultaneously. For example, in certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system com-
ponents in the embodiments described above should not be

US 9,473,365 B2

15

understood as requiring such separation in all embodiments,
and it should be understood that the described program
components and systems can generally be integrated
together in a single software product or packaged into
multiple software products.

The previous description is provided to enable any person
skilled in the art to practice the various aspects described
herein. Various modifications to these aspects will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other aspects. Thus, the
claims are not intended to be limited to the aspects shown
herein, but are to be accorded the full scope consistent with
the language claims, wherein reference to an element in the
singular is not intended to mean “one and only one” unless
specifically so stated, but rather “one or more.”

A phrase such as an “aspect” does not imply that such
aspect is essential to the subject technology or that such
aspect applies to all configurations of the subject technology.
A disclosure relating to an aspect may apply to all configu-
rations, or one or more configurations. A phrase such as an
aspect may refer to one or more aspects and vice versa. A
phrase such as a “configuration” does not imply that such
configuration is essential to the subject technology or that
such configuration applies to all configurations of the subject
technology. A disclosure relating to a configuration may
apply to all configurations, or one or more configurations. A
phrase such as a configuration may refer to one or more
configurations and vice versa.

The word “exemplary” is used herein to mean “serving as
an example or illustration.” Any aspect or design described
herein as “exemplary” is not necessarily to be construed as
preferred or advantageous over other aspects or designs.

What is claimed is:

1. A method comprising:

identifying, by a computer processor, a plurality of

resource candidates capable of hosting a logical
resource of a service;

filtering, by the computer processor, the plurality of

resource candidates based on a first filter of a first filter
chain to yield a first set of filtered resource candidates,
the first filter chain comprising a first set of serially
connected filters, wherein the first filter of the first filter
chain includes a reference to a second filter chain, the
second filter chain comprising a second set of serially
connected filters, different than the first set of serially
connected filters;

after filtering the plurality of resource candidates, filtering

the first set of filtered resource candidates based on
each filter in the second filter chain to yield a second set
of filtered resource candidate;

after filtering the first set of resource candidates, filtering

the second set of resource candidates based on at least
a second filter of the first filter chain to yield a third set
of resource candidates, the second filter of the first filter
chain being ordered after the first filter in the first filter
chain; and

selecting, from the third set of resource candidates, a

resource for hosting the logical resource.

2. The method of claim 1, wherein filtering the first set of
filtered resource candidates based on each filter in the
second filter chain comprises triggering a second scheduler
to take control from a first scheduler to process the second
filter chain.

3. The method of claim 2, wherein triggering the second
scheduler to process the second filter chain further com-
prises:

15

20

25

30

35

40

45

50

55

16

transferring control to the second scheduler, wherein the
second set of filtered resource candidates is filtered
based on at least a second filter of the first filter chain
upon the first scheduler gaining control back from the
second scheduler.

4. The method of claim 3, wherein the first scheduler is
suspended after transferring control to the second scheduler
and until gaining control from the second scheduler.

5. The method of claim 1, wherein second filter chain is
configured to instantiate a resource for the service.

6. The method of claim 1, further comprising:

assigning respective weights to the third set of filtered

resource candidates; and

selecting the resource based on the respective weights.

7. The method of claim 6, wherein the respective weights
are assigned on a basis of suitableness for hosting the logical
resource.

8. The method of claim 6, wherein the third set of filtered
resource candidates are sorted based on the respective
weights.

9. The method of claim 1, wherein the resource is selected
at random from the third set of filtered resource candidates.

10. The method of claim 1, wherein at least one filter in
the first filter chain is capable of accepting or rejecting one
or more resource candidates of the plurality of resource
candidates.

11. The method of claim 1, wherein the second filter chain
comprises at least one reference filter referencing a third
filter chain.

12. The method of claim 1, wherein the reference filter
comprises a reference for at least one of a triggered sched-
uler, a triggered filter chain, or a filter chain index.

13. The method of claim 1, further comprising:

identifying the first filter chain by determining an entry-

point filter chain for the service from a plurality of filter
chains.

14. The method of claim 13, wherein the entry-point filter
chain is determined by a lookup in a hash table.

15. The method of claim 1, further comprising:

creating a context container for storing information used

during an instantiation of the logical resource.

16. The method of claim 15, wherein the first set of
serially connected filters can modify the information stored
in the context container.

17. The method of claim 15, wherein the context container
acts as a means of communication between the first filter
chain and the second filter chain.

18. The method of claim 15, further comprising:

creating a copy of the context container and giving the

second filter chain access to the copy of the context
container.

19. A system comprising:

one or more computer processors; and

a memory storing instructions that, when executed by the

one or more computer processors, cause the system to:

identify, a plurality of resource candidates capable of
hosting a logical resource of a service;

filter the plurality of resource candidates based on a
first filter of a first filter chain to yield a first set of
filtered resource candidates, the first filter chain
comprising a first set of serially connected filters,
wherein the first filter of the first filter chain includes
a reference to a second filter chain, the second filter
chain comprising a second set of serially connected
filters, different than the first set of serially connected
filters;

US 9,473,365 B2

17

after filtering the plurality of resource candidates, filter
the first set of filtered resource candidates based on
each filter in the second filter chain to yield a second
set of filtered resource candidate;

after filtering the first set of resource candidates, filter-
ing the second set of resource candidates based on at
least a second filter of the first filter chain to yield a
third set of resource candidates, the second filter of
the first filter chain being ordered after the first filter
in the first filter chain; and

select, from the third set of resource candidates, a
resource for hosting the logical resource.

20. A non-transitory computer-readable medium storing
instructions that, when executed by a computing device,
cause the computing device to:

identify, a plurality of resource candidates capable of

hosting a logical resource of a service;

filter the plurality of resource candidates based on a first

filter of a first filter chain to yield a first set of filtered

10

15

18

resource candidates, the first filter chain comprising a
first set of serially connected filters, wherein the first
filter of the first filter chain includes a reference to a
second filter chain, the second filter chain comprising a
second set of serially connected filters, different than
the first set of serially connected filters;

after filtering the plurality of resource candidates, filter the
first set of filtered resource candidates based on each
filter in the second filter chain to yield a second set of
filtered resource candidate;

after filtering the first set of resource candidates, filtering
the second set of resource candidates based on at least
a second filter of the first filter chain to yield a third set
of resource candidates, the second filter of the first filter
chain being ordered after the first filter in the first filter
chain; and

select, from the third set of resource candidates, a
resource for hosting the logical resource.

#* #* #* #* #*

